JOREK simulations of an argon-MGI-triggered disruption in JET i<mark>ons of an argon-MGI-triggered disruption in JET</mark>
E. Nardon, TSVV 9 progress meeting, 04/02/21

Context:

- **simulations of an argon-MGI-triggered disruption in JET**
E. Nardon, TSVV 9 progress meeting, 04/02/21
t:
3D MHD codes can now « easily » simulate what qualitatively looks
ike a thermal quench:
• Burst of MHD activity **Simulations of an argon-MGI-triggered**
E. Nardon, TSVV 9 progress meeting, 04/
t:
3D MHD codes can now « easily » simulate w
like a thermal quench:
• Burst of MHD activity
• Full stochastization **Simulations of an argon-MGI-triggered dis**
E. Nardon, TSVV 9 progress meeting, 04/02/21
Cit:
BD MHD codes can now « easily » simulate what
like a thermal quench:
• Burst of MHD activity
• Full stochastization
• Temperatur **E. Nardon, TSVV 9 progress meeting, 04/02/21**
 E. Nardon, TSVV 9 progress meeting, 04/02/21
 C:
 t:
3D MHD codes can now « easily » simulate what qualitatively l
ike a thermal quench:
• Burst of MHD activity
• Full stochastization
• Temperature collapse in the core
However,
• No published simulation displays an I_p s ite what qualitatively looks
spike comparable to
s not been pushed very far • Burst of MHD codes can now « easily » simulate what qualitatively looks

• Burst of MHD activity

• Full stochastization

• Temperature collapse in the core

• Mo published simulation displays an I_p spike comparable t
	-
	- Full stochastization
	-
- **However,**
	- measurements
	-
- Burst of MHD activity

 Full stochastization

 Temperature collapse in the core

However,

 No published simulation displays an I_p spike comparable to

measurements

 Besides this, quantitative validation has not Full stochastization

Fermerature collapse in the core

However,

No published simulation displays an I_p spike comparable to

measurements

Besides this, quantitative validation has not been pushed very far

JOREK simul

The long history of JOREK simulations of JET #85943, or… the saga of the I_p spike The long history of JOREK simulations of JET #85943,
or... the saga of the I_p spike
ss has been slow because:
Simulations take ~1 month to run
Numerical instabilities often occur
These were among the first simulations w The long history of JOREK simulations of JET #85943,
or... the saga of the I_p spike
ss has been slow because:
Simulations take ~1 month to run
Numerical instabilities often occur
These were among the first simulations w The long history of JOREK simulations of JET #85943,
or... the saga of the I_p spike
ss has been slow because:
Simulations take ~1 month to run
Numerical instabilities often occur
These were among the first simulations w **The long history of JOREK simulations of JET #85943,**

or... the saga of the I_p spike

Progress has been slow because:
 CONET ASSEM

Simulations take ~1 month to run

Numerical instabilities often occur

These were a **itions of JET #85943,
I_p spike**
h an impurity fluid in JOREK
spike were obtained… The long history of JOREK simulations of JET #8

or... the saga of the I_p spike

ss has been slow because:

Simulations take ~1 month to run

Numerical instabilities often occur

These were among the first simulations w

- Progress has been slow because:
	-
	-
	-
- -
- **Progress has been slow because:**
 Exampled Simulations take ~1 month to run
 Example 1 Numerical instabilities often occur
 Example 1 These were among the first simulations with an impurity fluid in JOREK

In early Progress has been slow because:

Simulations take ~1 month to run

Numerical instabilities often occur

These were among the first simulations with

In early 2019, simulations displaying a 'realistic' I_p

Presented at t Simulations take ~1 month to run
Numerical instabilities often occur
These were among the first simulations with an impurit
2019, simulations displaying a 'realistic' l_p spike were
Presented at the Princeton TSDW 2019
e to run

occur

simulations with an impurity fluid in JOREK

g a 'realistic' l_p spike were obtained...

TSDW 2019

ered which caused an over-estimation of the

spike got strongly reduced

e input parameters (position of ations displaying a 'realistic' I_p spike were obtaint
the Princeton TSDW 2019
vas later discovered which caused an over-estin
the bug, the I_p spike got strongly reduced
of things in the input parameters (position of g 2019, simulations displaying a 'realistic' l_p spike w
Presented at the Princeton TSDW 2019
ever, a bug was later discovered which caused and
power
After solving the bug, the l_p spike got strongly redu
ng a number of t
	-
- These were among the first simulations with an impurity fluid in JOREK

In early 2019, simulations displaying a 'realistic' I_p spike were obtained...

Presented at the Princeton TSDW 2019

...However, a bug was later di viscosity, \dots), the I_p spike came back
	-
- 2 Movever, a bug was later discovered which caused an over-estimation of the
radiated power
 After solving the bug, the l_p spike got strongly reduced

Changing a number of things in the input parameters (position of gas ... However, a bug was later discovered which caused an over-estimation of the radiated power

■ After solving the bug, the I_p spike got strongly reduced

Changing a number of things in the input parameters (position byer-estimation of the
ced
ition of gas deposition,
ort^{-7-3/2}), which did not
spike disappeared again!

What's the matter with the I_p spike?

- The presence of a large Ip t's the matter with the I_p spike?
spike seemed related to strong MHD activity in the very
way to the centre not sufficient core **What's the matter with the** I_p **spike?**

ssence of a large I_p spike seemed related to strong MHD activity in

Stochasticity all the way to the centre not sufficient

simulations suggest that what makes the difference i **Example 19 What's the matter with the I_p spike?**
The presence of a large I_p spike seemed related to strong MHD activity in the very
core
Execent simulations suggest that what makes the difference is a strong enough What's the matter with the I_p **spike?**
sence of a large I_p spike seemed related to strong MHD activity in the very
Stochasticity all the way to the centre not sufficient
simulations suggest that what makes the differe
	-
- **What's the matter with the** I_p **spike?**
The presence of a large I_p spike seemed related to strong MHD a
core
Execute Stochasticity all the way to the centre not sufficient
Recent simulations suggest that what makes t **What's the matter with the** I_p **spike?**

ssence of a large I_p spike seemed related to strong MHD activ

Stochasticity all the way to the centre not sufficient

simulations suggest that what makes the difference is a st Stochasticity all the way to the centre not sufficient

simulations suggest that what makes the difference is a strong enough

e cooling inside the 2/1 island

Method: scan the amount of impurities deposited in the 2/1 is
	-
	-
- Mechanism:
	-
- Stochasticity all the way to the centre not sufficient

simulations suggest that what makes the difference is a strong enough

e cooling inside the 2/1 island

Method: scan the amount of impurities deposited in the 2/1 is PRL 2012]
- simulations suggest that what makes the difference is a strong enough
e cooling inside the 2/1 island
Method: scan the amount of impurities deposited in the 2/1 island
Will show examples next
nism:
Radiative collapse \rightarrow simulations suggest that what makes the diletence is a strong enough

e cooling inside the 2/1 island

Method: scan the amount of impurities deposited in the 2/1 island

Will show examples next

nism:

Radiative collapse Method: scan the amount of impurities deposited in the 2/1 island

Will show examples next

ism:

Radiative collapse \rightarrow current decay \rightarrow resonant $\delta B \rightarrow$ further island growth

• 'Rebut mechanism', invoked to explain Hollar Shear Alfvén wave propagation brings in current

• Shear Alfvén wave propagative collapse → current decay → resonant δB → further island growth

• Febut mechanism', invoked to explain density limit disruptions [G
	-
	-

Model details and input parameters

- Argon injection:
	- - Argon transport = diffusion + convection at plasma velocity
- Model details and input parameters
njection:
Argon gas dynamics not described by the model
• Argon transport = diffusion + convection at plasma velocity
Argon injection rate adjusted to match n_{el} from interferometry
- **Model details and input parameters**

→ Argon gas dynamics not described by the model

→ Argon transport = diffusion + convection at plasma velocity

→ Argon injection rate adjusted to match n_{el} from interferometry

→ Model details and input parameters

njection:

Argon gas dynamics not described by the model

• Argon transport = diffusion + convection at plasma velocity

Argon injection rate adjusted to match n_{el} from interferometr **Model details and input parameters**

njection:

Argon gas dynamics not described by the model

• Argon transport = diffusion + convection at plasma velocity

Argon injection rate adjusted to match n_{el} from interferome **Model details and input parameters**
 Argon gas dynamics not described by the model

• Argon transport = diffusion + convection at plasma velocity

Argon injection rate adjusted to match n_{el} from interferometry

Argo **Model details and input parameters**

njection:

Argon gas dynamics not described by the model

• Argon transport = diffusion + convection at plasma velocity

Argon injection rate adjusted to match n_{el} from interferome Argon injection:
 Argon gas dynamics not described by the model

• Argon transport = diffusion + convection at plasma velocity
 \rightarrow Argon injection rate adjusted to match n_{el} from interferometry
 Argon deposition a Argon gas dynamics not described by the model

• Argon transport = diffusion + convection at plasma vel

Argon injection rate adjusted to match n_{el} from interferom

Argon deposition at the top, in the SOL for the early • Argon transport = diffusion + convection at plasma ve

→ Argon injection rate adjusted to match n_{el} from interferor

- Argon deposition at the top, in the SOL for the early pare

- Then, in some sims., moved into 2/ → Argon injection rate adjusted to match n_{el} from interferometry

- Argon deposition at the top, in the SOL for the early part of the simulation

- Then, in some sims., moved into 2/1 island once cold front has reached
	- -
	-
- -
- Perpendicular viscosity: 'turbulent' $(3 \text{ m}^2/\text{s})$
-
-
- Perpendicular heat conductivity: 'turbulent' (2 m^2/s)
- Argon deposition at the top, in the SOL for the early part of the since Then, in some sims., moved into 2/1 island once cold front has re

 Justification: recombination in cooled region allows gas to pene
 Example 18 S ■ Then, in some sims., moved into 2/1 island once cold front has

■ Justification: recombination in cooled region allows gas to pe

■ Source extension: 8 cm poloidally and 2 radians toroidally

Resistivity: Spitzer with • Justification: recombination in cooled region allows gas to penetrate

— Source extension: 8 cm poloidally and 2 radians toroidally

Resistivity: Spitzer with a saturation above 700 eV

— Ohmic heating on

Perpendicular Particle perpendicular diffusivity: much larger than 'turbulent' (30 m²/s)
	- No // diffusion

Frace-aligned poloidal grid
Moderate resolution: ~50 (radial) x 60
(poloidal) elements (poloidal) elements Frace-aligned poloidal grid

Moderate resolution: ~50 (radial) x 60

(poloidal) elements

Il discretization uses Fourier harmonics

In from 0 to 10

Ve wall

Flux-surface-aligned poloidal grid

— Moderate resolution: ~50 (radial) x 60

(poloidal) elements

Toroidal discretization uses Fourier harmonics

— n from 0 to 10

Resistive wall

— Should be rather realistic, although no

DI_501_JET85943_R3P5Z1P1_N5_VISCO1EM6TDEPFALSE_RST2500_N10

Simulation in which the argon source is moved into the 2/1 'island'
once the cold front has reached q=2
 $\frac{1}{2}$ (MA/m²)

DI_501_JET85943_R3P5Z1P1_N5_VISCO1EM6TDEPFALSE_RST2500_N10_RST6000_MGIR3P3Z0P9

So, which simulation is most realistic?

ce in n=1 mode ■ But not (immediately) visible on the

- So, which simulation is most realistic
Massive difference in n=1 mode
growth... locked mode signals growth… **but a strategies of the contract of t**
	- But not (immediately) visible on the most realistic?
But not (immediately) visible on the
locked mode signal
Likely reason: dynamics faster
than wall penetration time
		- **realistic?**

		(immediately) visible on the

		mode signal

		Likely reason: dynamics faster

		than wall penetration time

		Experiment

- Cannot discriminate based on I_p spike 2.05
	- second simulation 1.95
- Cannot discriminate based on I_p spike
in this case due to numerical issues

Nowever, one can see the very $\frac{2}{3}$ Cannot discriminate based on I_p spike

in this case due to numerical issues
 \blacksquare However, one can see the very

beginning of an I_p spike in the And Containing the second simulation

Second simulation

However, one can see the very $\frac{2}{3}$
 $\frac{1}{3}$
 $\$ Beginning of an I_p spike
 $\begin{array}{|l|l|}\n\hline\n\text{Eyperiment} & \text{JOREK, argon} \\
\hline\n\text{JOREK, argon} & \text{JOREK, argon} \\
\hline\n\text{JOREK, argon} \\
\hline\n\text{JOREK$ 2.1
 $\frac{1}{\sqrt{OREK, argon source in SOL}}$

Spike in the $\frac{1}{\sqrt{OREK, argon source moved into 2/1}}$

spike in the $\frac{2}{\sqrt{OREK, argon source moved into 2/1}}$ The radiated power is the clearest

Sign that the 2nd simulation is more
 $\frac{1.95}{0}$

The radiated power is the clearest

Sign that the 2nd simulation is more
 $\frac{1.90 \text{ K} \times \text{R}}{2000}$

The radiated power is the second simulation 1.95

second simulation 1.9
 $0 = 2$
 $\frac{4}{1}$
 $\frac{1}{1}$ 8 $\times 10^{-3}$ $\overline{0}$ $\mathbf{0}$ $\overline{2}$ $\overline{4}$ 6 **8 a** Time (s)
	- realistic

Note that the spatial distribution of the radiated power is consistent with
measurements (\rightarrow confirms that radiation mainly localized in 2/1 'island' region)
Horizontal bolometer Vertical bolometer Note that the spatial distribution of the radiated power is consistent with
measurements (→ confirms that radiation mainly localized in 2/1 'island' region)
Horizontal bolometer Vertical bolometer
KB5H bolometer signal (

Another simulation in which the argon source is moved into the 2/1

"island" (this one survives for longer)

is (MA/m²⁾
 is (MA/m²)
 i tion in which the argon source is moved into the

"island" (this one survives for longer)
 T_e (keV) $\begin{array}{|l|l|}\n\hline\nI_e(\text{keV})\n\hline\n\end{array}$ n_{Ar} (10^{20/}m

5.26ms

DI_501_JET85943_IP1P95MA_R3P5Z1P1_N10_VISCO1EM6TDEPFALSE_EVNUM1EM10_RST4200_MGIR3P3Z0P9

²⁷

5.62ms

5.78ms

5.90ms

5.96ms

5.99ms

6.02ms

6.05ms

6.16ms

6.28ms

6.40ms

6.54ms

The current sheet in the center may be interpreted as a consequence of the 2/1
island* 'running into itself'
- *which is not a proper island anymore because of stochasticity The current sheet in the center may be interpreted as a conse
island* 'running into itself'

■ *which is not a proper island anymore because of stock rrent sheet in the center may be interpreted as a consequence of the 2/1
'running into itself'
*which is not a proper island anymore because of stochasticity
scent of publications from 30+ years ago! The current sheet in the center may be interpreted as a consequence of the 2/1 island* 'running into itself'
 \bullet *which is not a proper island anymore because of stochasticity

Reminiscent of publications from 30+ years

FIG. 2. The contours of constant (a) ψ and (b) J at maximum island size for $q(0)$ – 1.7. Cuts of the current profile across the O point (dotted line) and X point (dashed line) compared with the equilibrium (solid line) are shown in (c). The contours in (d) are the constant- ψ contours at maximum amplitude of a mode which is linearly ideally unstable with $\lambda = 20$ and other parameters as in (a).

FIG. 18. (a) Electron temperature T_e , (b) current density j, and (c) stream function ϕ , at time t/ τ_A = 2923, during the final phase at maximum $m = 3/n = 1$ amplitude.

- grows
- I_p inside ψ_N < 1 peaks before total I_p (compare black and magenta q profiles)
- induced in region ψ_N > 1, which $\frac{1}{5}$ $\frac{5.5}{5.5}$ $\frac{6}{1}$ $\frac{6.5}{1}$ $\frac{7}{1}$ $\times 10^{-3}$

e flattening inside q=2 as 2/1 mode

e ψ_N < 1 peaks before total I_p

are black and magenta q profiles)

Reason: negative 'skin current'

induced in ^{Time (s)}

E flattening inside q=2 as 2/1 mode
 ψ_N < 1 peaks before total I_p

are black and magenta q profiles)

Reason: negative 'skin current'

induced in region ψ_N > 1, which

takes some time to decay

As desc
	-

Conclusion and perspectives

Conclusion and perspect
Seems like the I_p spike saga is finally coming to an erection of the Now running some more simulations and will the like the I_p spike saga is finally coming to an en
Now running some more simulations and will tr
questions remain to be explored:
Why no global radiative collapse?
• Possibly not enough impurities deposited
• Parallel fl

- **Conclusion and perspectives**
spike saga is finally coming to an end \circledcirc
ng some more simulations and will try to publish **Conclusion and perspectives**
like the I_p spike saga is finally coming to an end \circledcirc
Now running some more simulations and will try to publish
questions remain to be explored: **Conclusion and perspectives**
Seems like the I_p spike saga is finally coming to an end \circledcirc
Now running some more simulations and will try to publish
Many questions remain to be explored:
Why no global radiative colla
- - -
- **Conclusion and perspectives**

like the I_p spike saga is finally coming to an end \circledcirc

Now running some more simulations and will try to publ

uestions remain to be explored:

Why no global radiative collapse?

 Pos **Conclusion and perspectives**

ilke the I_p spike saga is finally coming to an end \circledcirc

Now running some more simulations and will try to publish

uestions remain to be explored:

Why no global radiative collapse?

• **Conclusion and perspectives**

ilke the I_p spike saga is finally coming to an end \circledcirc

Now running some more simulations and will try to publish

uestions remain to be explored:

Why no global radiative collapse?

•
	- -
- Now running some more simulations and will try to publish

uestions remain to be explored:

Why no global radiative collapse?

 Possibly not enough impurities deposited

 Parallel flow damping may artificially reduce im more simulations and will try to publish

be explored:

ative collapse?

uugh impurities deposited

mping may artificially reduce impurity penetration

a?

slightly above 1 → No 1/1 mode

SPI simulations by D. Bonfiglio d uestions remain to be explored:

Why no global radiative collapse?

• Possibly not enough impurities deposited

• Parallel flow damping may artificially reduce impurity penetration

Role of the q profile?

• Here we had q Why no global radiative collapse?

• Possibly not enough impurities deposited

• Parallel flow damping may artificially reduce im

Role of the q profile?

• Here we had q₀ slightly above $1 \rightarrow$ No 1/1 mod

Why do JET neo sphal radiative collapse?

y not enough impurities deposited

flow damping may artificially reduce impurity penetration

eq profile?

Et neon SPI simulations by D. Bonfiglio do not (yet) produce a

spike in spite of havin Why no global radiative collapse?
• Possibly not enough impurities deposited
• Parallel flow damping may artificially reduce impurity penetration
Role of the q profile?
• Here we had q_o slightly above 1 → No 1/1 mode
Wh • Parallel flow damping may artificially reduce impurity penetration

Role of the q profile?

• Here we had q_0 slightly above 1 → No 1/1 mode

Why do JET neon SPI simulations by D. Bonfiglio do not (yet) produce a

re Role of the q profile?
• Here we had q_0 slightly above 1 → No 1/1 mode
Why do JET neon SPI simulations by D. Bonfiglio do not (yet) produce a
• q profile effect? Viscosity effect?
• q profile effect? Viscosity effect?
	-
	- -

Backup slides

5000: 5.259263938370858E-03 7000: 5.624201557610554E-03 9000: 5.778798349468042E-03 11000: 5.897718958589353E-03 13000: 5.958338739088233E-03 15000: 5.988068891368020E-03 17000: 6.017799043647807E-03 19000: 6.050145449328215E-03 21000: 6.158244283019291E-03 23000: 6.277164892140602E-03 25000: 6.396085501261913E-03 27000: 6.536857772309133E-03

