JOREK simulations of an argon-MGI-triggered disruption in JET

E. Nardon, TSVV 9 progress meeting, 04/02/21

Context:

- 3D MHD codes can now « easily » simulate what qualitatively looks like a thermal quench:
 - Burst of MHD activity
 - Full stochastization
 - Temperature collapse in the core
- However,
 - No published simulation displays an I_p spike comparable to measurements
 - Besides this, quantitative validation has not been pushed very far
- JOREK simulations of the argon-MGI-triggered disruption in JET pulse #85943 have been going on for... a long time!

The long history of JOREK simulations of JET #85943, or... the saga of the I_p spike

- Progress has been slow because:
 - Simulations take ~1 month to run
 - Numerical instabilities often occur
 - These were among the first simulations with an impurity fluid in JOREK
- In early 2019, simulations displaying a 'realistic' I_p spike were obtained...
 - Presented at the Princeton TSDW 2019
- ...However, a bug was later discovered which caused an over-estimation of the radiated power
 - After solving the bug, the I_p spike got strongly reduced
- Changing a number of things in the input parameters (position of gas deposition, viscosity, …), the I_p spike came back
 - Present at the REM 2020
- Moving from a temperature-dependent viscosity model (µ~T^{-3/2}), which did not seem realistic, to a temperature-independent one... the I_p spike disappeared again!

What's the matter with the I_p spike?

- The presence of a large I_p spike seemed related to strong MHD activity in the very core
 - Stochasticity all the way to the centre not sufficient
- Recent simulations suggest that what makes the difference is a strong enough radiative cooling inside the 2/1 island
 - Method: scan the amount of impurities deposited in the 2/1 island
 - Will show examples next
- Mechanism:
 - **—** Radiative collapse \rightarrow current decay \rightarrow resonant $\delta B \rightarrow$ further island growth
 - 'Rebut mechanism', invoked to explain density limit disruptions [Gates PRL 2012]
 - Things get more complicated when the island gets destroyed by magnetic stochasticity (which happens typically at the end of the pre-TQ phase):
 - Parallel heat conduction brings in heat
 - Shear Alfvén wave propagation brings in current

Simulated pulse: JET #85943

Model details and input parameters

- Argon injection:
 - Argon gas dynamics not described by the model
 - Argon transport = diffusion + convection at plasma velocity
 - \rightarrow Argon injection rate adjusted to match n_{el} from interferometry
 - Argon deposition at the top, in the SOL for the early part of the simulation
 - Then, in some sims., moved into 2/1 island once cold front has reached q=2
 - Justification: recombination in cooled region allows gas to penetrate
 - Source extension: 8 cm poloidally and 2 radians toroidally
- Resistivity: Spitzer with a saturation above 700 eV
 - Ohmic heating on
- Perpendicular viscosity: 'turbulent' (3 m²/s)
- Parallel hyper-viscosity: very large, to damp parallel flow
- Parallel heat conductivity: Spitzer-Härm
- Perpendicular heat conductivity: 'turbulent' (2 m²/s)
- Particle perpendicular diffusivity: much larger than 'turbulent' (30 m²/s)
 - No // diffusion

Flux-surface-aligned poloidal grid

 Moderate resolution: ~50 (radial) x 60 (poloidal) elements

Toroidal discretization uses Fourier harmonics

n from 0 to 10

Resistive wall

 Should be rather realistic, although not checked in detail to what degree

Simulation in which the argon source is left in the SOL

DI_501_JET85943_R3P5Z1P1_N5_VISCO1EM6TDEPFALSE_RST2500_N10

Simulation in which the argon source is moved into the 2/1 'island' once the cold front has reached q=2

DI_501_JET85943_R3P5Z1P1_N5_VISCO1EM6TDEPFALSE_RST2500_N10_RST6000_MGIR3P3Z0P9

So, which simulation is most realistic?

Massive difference in n=1 mode growth...

- But not (immediately) visible on the locked mode signal
 - Likely reason: dynamics faster than wall penetration time

- Cannot discriminate based on I_p spike in this case due to numerical issues
 - However, one can see the very beginning of an I_p spike in the second simulation

The radiated power is the clearest sign that the 2nd simulation is more realistic

Note that the spatial distribution of the radiated power is consistent with measurements (\rightarrow confirms that radiation mainly localized in 2/1 'island' region)

Experiment

JOREK

Horizontal bolometer lines

Vertical bolometer lines

Another simulation in which the argon source is moved into the 2/1 'island' (this one survives for longer)

5.26ms

DI_501_JET85943_IP1P95MA_R3P5Z1P1_N10_VISCO1EM6TDEPFALSE_EVNUM1EM10_RST4200_MGIR3P3Z0P9

²⁷

5.62ms

5.78ms

5.90ms

5.96ms

5.99ms

6.02ms

6.05ms

6.16ms

6.28ms

6.40ms

6.54ms

- The current sheet in the center may be interpreted as a consequence of the 2/1 island* 'running into itself'
 - *which is not a proper island anymore because of stochasticity

Reminiscent of publications from 30+ years ago!

FIG. 2. The contours of constant (a) ψ and (b) J at maximum island size for q(0) = 1.7. Cuts of the current profile across the O point (dotted line) and X point (dashed line) compared with the equilibrium (solid line) are shown in (c). The contours in (d) are the constant- ψ contours at maximum amplitude of a mode which is linearly ideally unstable with $\lambda = 20$ and other parameters as in (a).

[A. Bondeson et al., Nucl. Fusion 1991 **31** 1695]

FIG. 18. (a) Electron temperature T_{e} , (b) current density j, and (c) stream function ϕ , at time $t/\tau_A = 2923$, during the final phase at maximum m = 3/n = 1 amplitude.

- q profile flattening inside q=2 as 2/1 mode grows
- I_p inside ψ_N < 1 peaks before total I_p (compare black and magenta q profiles)
 - Reason: negative 'skin current' induced in region $\psi_N > 1$, which takes some time to decay
 - As described in Biskamp's book 'Nonlinear magnetohydrodynamics'

Conclusion and perspectives

- Seems like the I_p spike saga is finally coming to an end \odot
 - Now running some more simulations and will try to publish
- Many questions remain to be explored:
 - Why no global radiative collapse?
 - Possibly not enough impurities deposited
 - Parallel flow damping may artificially reduce impurity penetration
 - **—** Role of the q profile?
 - Here we had q_0 slightly above 1 \rightarrow No 1/1 mode
 - Why do JET neon SPI simulations by D. Bonfiglio do not (yet) produce a realistic I_p spike in spite of having a radiative collapse in the 2/1 island?
 - q profile effect? Viscosity effect?
 - Electron dynamics: stochastic losses, parallel momentum, ...?
 - Need to push JOREK simulations into the current quench (tough...)

Backup slides

5000: 5.259263938370858E-03 7000: 5.624201557610554E-03 9000: 5.778798349468042E-03 11000: 5.897718958589353E-03 13000: 5.958338739088233E-03 15000: 5.988068891368020E-03 17000: 6.017799043647807E-03 19000: 6.050145449328215E-03 21000: 6.158244283019291E-03 23000: 6.277164892140602E-03 25000: 6.396085501261913E-03 27000: 6.536857772309133E-03

