

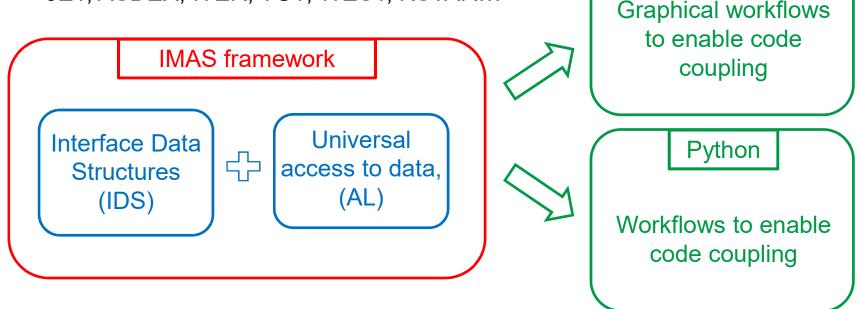
This work has been carried cut within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and ophinons expressed herein do not necessarily reflect those of the European Commission.

Runaway electron modelling in IMAS

Soma Olasz, Gergo Pokol

Institute of Nuclear Techniques, Budapest University of Technology and Economics Centre of Energy Research, Budapest, Hungary

E-TASC Planning meeting 15th January 2021

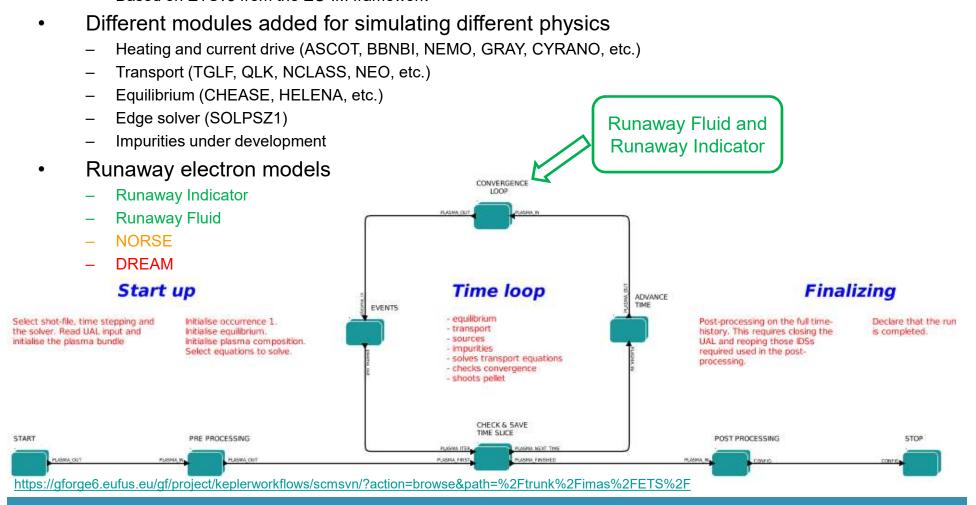


Kepler

ITER Modelling and Analysis Suite (IMAS)

- Based on the European framework for Integrated Modelling (EU-IM)
- Aims to enable the coupling of different codes
- Allows for creation of Python workflows
- Data can be imported from machines
 - JET, ASDEX, ITER, TCV, WEST, KSTAR...

https://confluence.iter.org/display/IMP/Integrated+Modelling+Home+Page

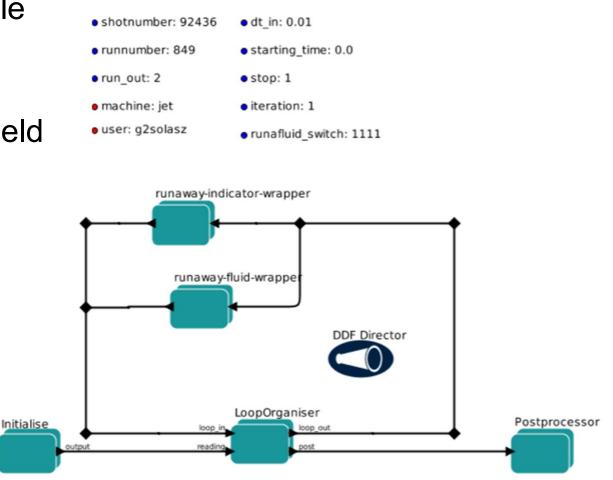


ETS version 6 is being developed in IMAS

Based on ETSv5 from the EU-IM framework

European Transport Simulator (ETS6)

Soma Olasz | E-TASC Planning meeting | 15.01.2021 | Page 3


Runaway Indicator

Shot parameters

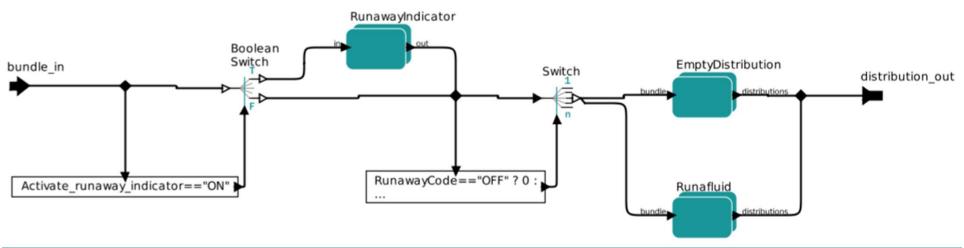
Runaway electron test loop

Simulation parameters

- Indication of possible runaway electron generation
- Calculates critical field
- Calculates Dreicer
 generation
- Gives warnings

https://gforge6.eufus.eu/gf/project/keplerworkflows/scmsvn/?action=browse&path=%2Ftrunk%2Fimas%2Factor_test_workflows%2Frunaways%2F

Soma Olasz | E-TASC Planning meeting | 15.01.2021 | Page 4



Runaway Fluid

- Estimation of runaway population
- Dreicer generation
- Avalanche generation
- Correction factors
- Outputs density

runaway_fluid_input		
sources		
dreicer		
	dreicer module	
dreicer_formula	hc_formula_63	-
dreicer_toroidicity	⊖Yes . No	
avalanche		Ē
	avalanche module	
avalanche_formula	rosenbluth_putvinski	
avalanche_toroidicity	⊖Yes ◉ No	
imits		
warning_percentage_limit	1	
rho_edge_calculation_limit	0.85	
unaway_fluid_output		
ndf5_output	◯Yes ® No	

Runaway Indicator and Fluid

	Runaway Indicator	Runaway Fluid
Dreicer generation	Critical electric field Dreicer generation rate [1] (67)	Dreicer generation rate [1] (63, 66, 67) Toroidicity correction [2] Dreicer generation with impurity and radiation effects [5]
Avalanche generation	-	R&P growth rate [3] Threshold electric field [4] Toroidicity correction [2] Avalanche generation with impurity and radiation effects [6]
Output	Warning if E>E _{crit} Warning if Dreicer growth rate > limit	Runaway electron density and current filled in distribution IDS Possible HDF5 output

[1] J.W. Connor and R.J. Hastie, Nucl. Fusion 15, 415 (1975)

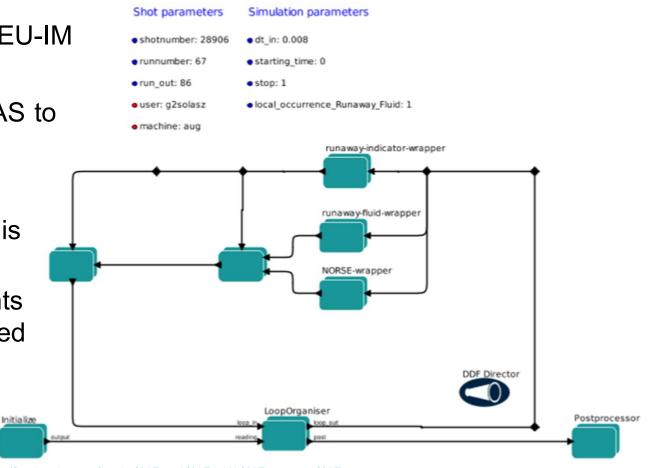
[2] E. Nilsson, et al., Plasma Phys. Contr. Fusion, 57, 095006 (2015)

[3] M.N. Rosenbluth and S.V. Putvinski, Nucl. Fusion 37, 1355 (1997)

[4] P. Aleynikov and B.N. Breizmann, Phys. Rev. Lett. 114, 155001 (2015)

[5] L. Hesslow, et al., Journal of Plasma Phys. (2019)

[6] L. Hesslow, et al., Nucl. Fusion 59, 084004 (2019)


https://github.com/osrep

Kinetic solvers

- NORSE
 - Integrated to the EU-IM framework
 - Adaptation to IMAS to be done
- DREAM
 - Addition to IMAS is task C9
 - Code requirements should be reviewed

 $\underline{https://gforge6.eufus.eu/gf/project/keplerworkflows/scmsvn/?action=browse\&path=\%2Ftrunk\%2F4.10b\%2Frunaways\%2Finawayays\%2Finaways\%2Finaways\%2Finaways\%2Finaways\%2Finawayays\%2Finaways\%2Finaways\%2Finawayays\%2Finawayays%2Finawayays\%2Finaways\%2Finaways\%2Finawayays%2Finaways\%2Finaways%2Finawayays%2$

Soma Olasz | E-TASC Planning meeting | 15.01.2021 | Page 7

Runaway Electron Test Workflow

Conclusions

- Reduced kinetic modelling is available in ETS 6
 Runaway Fluid
- Kinetic models to be added
 - NORSE added to previous framework
 - DREAM to be added to IMAS (Task C9)
- ETS 6 to be used for code validation
 - Impurity model is being developed