

Max-Planck-Institut für Plasmaphysik

12th January 2021 Runaway E-TASC TSVV planning meeting

Validation of ASTRA and ETS

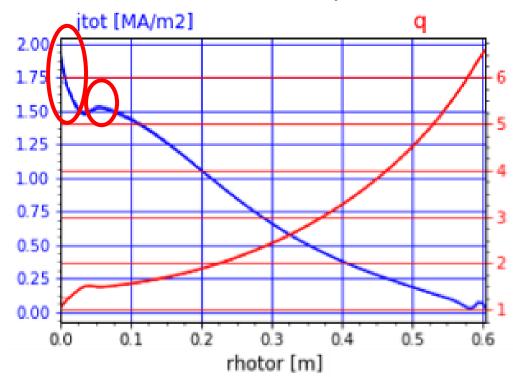
Oliver Linder¹♥, Soma Olasz²,³♥, Gergely Papp¹♥, Gergő Pokol²,³♥

¹Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany ²NTI, Budapest University of Technology and Economics, Budapest, Hungary ³Fusion Plasma Physics Department, Centre for Energy Research, Budapest, Hungary



ETS: An overview

- ETS 5: a 1.5D transport solver for self consistent simulation of plasma discharges (EU-IM framework)
 - Integrated models for transport, MHD evolution, impurities, heating systems, REs, etc.
 - Runaway Fluid (reduced kinetic) and Runaway Indicator
- Can import experimental data input from various machines
 - ASDEX, JET, TCV, ITER, etc.

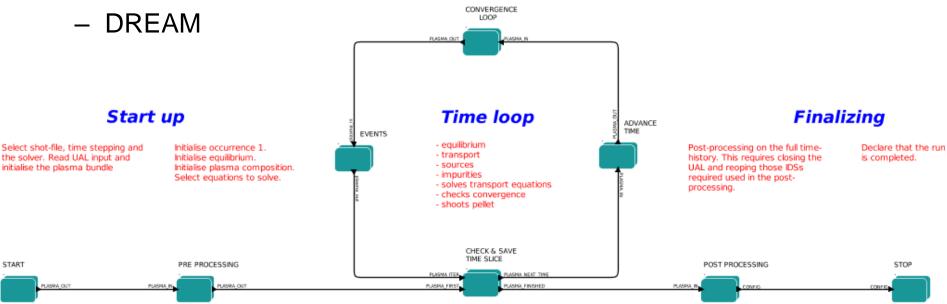


Some results with ETS 5

- Preliminary results, stability to be improved
- Thermal quench simulated
 - Enhanced impurity transport to simulate MHD mixing
- Runaway seed in the center
- Different modules used in ETS
 - Impurity evolution and transport
 - NCLASS for neoclassical transport

Current profile just after the end of thermal quench

O. Linder et al. *Nucl. Fusion* **60**, 096031 (2020)



ETS: An overview

ETS 6

- Developed in IMAS infrastructure based on ETS 5
- Main focus from 2021
- Impurity module under development
- Same runaway models included as ETS 5 + integration of NORSE this year

